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Regioselectivity of MAO-Catalyzed Allylmetallation of Conjugated Enynes
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Abstract: Various conjugated enynes 1 were subjected to the MAO-catalyzed reaction with the
allylzirconium, generated by hydrozirconation of alienes. In light of the regiochemisty, the C—C bond
formation occurs exclusively between the o carbon of the allylzirconium and the "yne" part of the
conjugated enyne 1. Steric demand of the t~-substituent X in 1 is the decisive factor for determing the
the reactive site for 1. © 1998 Elsevier Science Ltd. All rights reserved.

We recently reported a method for allylation of 1-alkynes (Scheme 1):! Allylzirconium B, generated by the
hydrozirconation of allene A,2 adds to alkyne C in the presence of an organoaluminum promoter, e.g.
methylaluminoxane (MAO).3  As for the regiochemistry, allylzirconium B undergoes the C—C bond
formation exclusively at the o carbon. On the other hand, the reactive site for the alkyne partner C depends
on the steric demand of the substituent R When R' is an aromatic or a sec-alkyl group, the internal carbon
of alkyne C is the exclusive allylation site to give the "branched” 1,4-diene D, whereas a minor amount of the

“linear” product E is also produced when R' is a sterically less demandin

au nkK mandine eroun. i.e. a prim-alkvl (see
B prUrpy b 8 preiiTaliy L At
below)
Son 22U cpcnzn R R
@ 7 | ymao o AR -
A B I . J
2) Hz0* R R./\,\\ o
R———= —
I . c D (branched) E (linear)
| |
] ,./}.
Z)\/ R' = aromatic D:E = >20:1
X sec-alkyl D:E =>20:1
I 1 I prim-alkyl D:E = 4:1
. ]
Scheme 1

With this tendency in mind, we became interested in the reaction of conjugated enynes of the general
formula 1 with varying substituents (X, Y, Z) to examine the regiochemical outcome. An additional interest
in such enyne substrates was the possible participation of the "ene" part as a reactive site for the
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Eq. 1 represents the reaction of the enyne with an "o-substitutent"”, which was fully regioselective. The
allylzirconium species 4, generated from allene 2, was chilled to =78 °C, to which was added enyne 1a.
After the addition of MAO (0.3 equiv., toluene solution),3.7 the temperature was raised to —25 °C during 15
min,8 and the mixture was further stirred for 15 min. Agqueous workup! afforded triene 5 as a sole product
('H NMR and HPLC).%.10
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substrate 1a underwent the reaction, not at the C=C bond, but at the C=C bond with the C-C bond formation
at its internal carbon, giving the branched isomer (corresponding to D in Scheme 1).

It was noted that, in such branched products, the original geometry of the enyne double bond was
retained as illustrated by egs. 2 and 3. Upon reaction with allylzirconium 6, generated from allene 3, the (Z)-
enyne 1b [N.B. the silyl group is a TBDMS (= -C4Hg(CH3)3Si)] gave triene 7 (eq. 2),10 whereas the (E)-
enyne 1c was cleanly converted to isomeric product 8 as a single isomer (eq. 3).10 Thus, the enyne
substrates with the o-substituent undergo the allylmetallation in a fully regio- and stereocontrolled manner

(cf. the cases for enynes without the "o-substituent”, egs. 5 and 6).
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upon subjected to the reaction with 4 (eq. 4). In addition to the branched product $, a small amount of t
linear product 10 was also produced, due presumably to the reduced steric demand by a cyclic structure.
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The €iiyne suostia
However, an interesting observation was made with respect to the olefinic geomeiry of the products. Upon
reaction of (E)-enyne le with allylzirconium 4 followed by desilylation (eq. 5), two spots were detected on
TLC (Rf0.57 and 0.54, hexane/EtOAc = 7/3). Careful chromatography (SiO) enabled their separation, and
the less polar one proved to be the branched product (E)-11 (52%). The more polar fraction (28%) was
composed of two isomeric linear products, the expectable (6£, 8£)-12 and, notably, a minor amount of the
(62, 82)-12.11 Interestingly, in the latter minor isomer the olefinic geometries were opposite to the former at

two positions, the newly formed C(6)—C(7) double bond and also the C(8)-C(9) double bond embedded in
the starting enyne. A similar situation was also the case for the corresponding (Z)-enyne 1f; the
regioselectivity was even poorer (eq. 6), where again the expectable linear product (6E, 8Z)-12 was
accompanied by its doubly-flipped geometrical isomer (6Z, 8E)-12
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small amounts, is intriguing, thereby suggesting any specific/selective nature of the side reaction. A

I

plausible explanation involves the isomerization of the "terminal” allylmetallation product via 1,3-
metallotropic shift.12,13 In the reaction of (E)-enyne le, for example, the vinylzirconium I, formed as an
intermediate leading to the triene 12, could isomerize to the doubly flipped isomer I1I via three events; 1,3-
shift (supra; I — II) followed by C-C bond rotation (II — II") and another 1,3-shift (supra; II' — III),
which, upon hydrolysis, gives (6Z, 82)-12, isomeric to (6E, 8E)-12 from the direct hydrolysis of 1.14
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In summary, the allylmetallation of conjugated enynes with allylzirconinm occurs at the "yne" part of the

Y v
enyne, where the regioselectivity depends critically on the steric demand of the substituent X.
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